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resonant couplings
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The transmission of vibration through a symmetric junction is considered. The
problem is introduced using a stretched string with a general point attachment, and
then a result is derived which encapsulates the important aspects of the transmission
behaviour for a wider class of systems. These are systems that consist of two semi-
infinite sections of identical, one-dimensional structure having only one propagating
wavetype (but any number of evanescent ones), joined through any linear system
that satisfies a condition of symmetry. For such systems, it is shown that there will
in general be a set of frequencies of perfect transmission and perfect reflection, in a
number and pattern which can be described in terms of the behaviour of the junction
alone. Representative examples are presented, based on the behaviour of bending
beams and thin circular cylinders with attached structures providing wave reflection.
The implications of this result are explored for sea coupling loss factors, and for the
interpretation of sea model predictions when such resonant coupling structures are
present.
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1. Introduction

Fundamental to many problems in noise and vibration control is the understanding
of vibration transmission between two systems across a junction of some kind. The
level of transmitted vibration, and its distribution in space and frequency, will be
governed by the detailed design of the systems and the junction. There are many
techniques, theoretical and experimental, for investigating such transmission
behaviour. At low frequencies the whole system is likely to exhibit low modal
overlap, so that deterministic analysis using idealized theoretical models, finite
element analysis, or experimental modal analysis can commonly be used to good
effect. Higher in frequency, especially if the modal overlap becomes significant, such
treatment becomes very difficult to carry through with acceptable accuracy, and in
any case may be of dubious value. One may learn more from an approximate analysis
of a stochastic nature, such as statistical room acoustics or statistical energy analysis
(sEA) (see, for example, Lyon 1975; Hodges & Woodhouse 1986).

This paper addresses a class of problems that are often encountered in practice,
and which present difficulties for both these styles of analysis. It concerns junction
structures that have internal degrees of freedom, so that their dynamics must be
taken into account in the transmission calculation. If the frequency range of interest
is not too high in the modal series of the subsystems coupled through this junction,
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512 D. J. Allwright and others

then a deterministic analysis of the whole coupled system may be possible which
incorporates the junction behaviour. But at higher frequencies the modal overlap
may become high in the subsystems so that a statistical analysis is indicated, but the
modal density of the junction structure on its own can still be quite low, so that it
may not be appropriate to include it as a third energy-storing subsystem in, for
example, a SEA model.

A common starting point for analysing such a system would be to consider the
wave reflection/transmission problem in which the two subsystems were regarded as
semi-infinite (see, for example, Lyon 1975; Cremer et al. 1973). The transmission
coefficient across the junction can be calculated as a function of frequency, and if the
subsystems are two- or three-dimensional, as a function of angle of incidence at the
junction. If a sEA model is required, the coupling loss factor would then be calculated
from this transmission coefficient by an averaging procedure (Lyon 1975). This
procedure can be applied, at least in principle, to any combination of subsystems and
junction. The existence of internal resonances in the junction does not invalidate the
approach, but it has significant implications for the interpretation of the results of
any modelling. Such internal resonances produce strong frequency dependence of the
transmission coefficient, which has immediate consequences for a deterministic
study, and rather less obvious ones for the results of a statistical model. The nature
and implications of this frequency dependence form the main subject of this study.

2. Wave transmission past a point attachment on a stretched string

Consider a stretched string of tension P and line density m, having a constraint
attached at the point x =0, in the form of a linear system which presents a
frequency-dependent (velocity) admittance Y(w) to the transverse motion of the
string. Assume a transverse displacement field

y(x, t) = e e+ Re ] (2. <0), y(xt)=Tee* (x>0) (2.1)

on the string, where k = w(m/P):. Enforcing the constraint condition at 2 = 0, the
transmission coefficient 7' and reflection coefficient £ are readily shown to be

2Y Y

T s d R=—-—"%
1 an Y4y,

= 2.2
2Y+7Y, (2:2)
where Y, = (Pm) is the wave admittance of the string.
We discuss exclusively conservative constraint systems, so that Y(w) is purely

imaginary at all frequencies. It follows that

T/R =—-2Y/Y, (2.3)
is purely imaginary, and that
; 2Y]*+ Y[ :
TP+|RP? = L= 2.
(PR RE = S (2.4)

as expected.

For any frequency such that Y — oo, there is perfect transmission of transverse
waves past the constraint (7"= 1, B = 0). Conversely, at any frequency such that
Y -0 there is perfect reflection (7' = 0, R = —1). The former case occurs trivially in
the absence of any constraint, or at a resonance frequency of the constraining
system. The latter case occurs if the constraint takes the form of a fixed point, or at
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coupling
N\ Re-ikx Teikx NS\

L 17

evanescent fields
Figure 1. Sketch of two-semi-infinite one-dimensional wave-bearing systems joined by a
symmetric coupling.

an antiresonance of the constraining system. Since Y(w) is the driving-point
admittance of a linear system, resonance and antiresonance frequencies alternate
(see, for example, Skudrzyk 1980). Thus frequencies of perfect transmission and
perfect reflection alternate, both occurring on average at the modal density of the
constraining system alone.

The function Y(w) may be written in terms of the eigenvalues and normal modes
of the constraining system (Hodges & Woodhouse 1986)

Y(w)=-Z—5— (2.5)

2 27
» Wy — O

where w, is the mth mass-normalized mode shape (evaluated at the point of
attachment to the string) and w, its frequency. This result makes it easy to
investigate the width of the transmission peaks. Near the nth modal frequency of the
constraining system, assuming low modal overlap, the admittance will be well
approximated by one term from the summation of (2.5), so that

2iwu?,
A 93 2 2 2\ "
2iwu? — Yy(w2 — w?)

(2.6)

This has the familiar form of the response of a damped single-degree-of-freedom
system to forcing, so that we may write down the ‘half-power bandwidth’ of the
perfect-transmission peak in 7'(w):

A, ~ 2u2(0)/Y,. 2.7)

This bandwidth has its origin in the radiation damping of the constraint mode
induced by connecting it to the semi-infinite strings.

3. A symmetric constraint on a one-dimensional system

Much of the behaviour seen in this simple example can be generalized to a class of
one-dimensional wave-bearing systems, on which an attached structure or other
inhomogeneity produces some reflection of waves. The system to be considered is
shown schematically in figure 1. Two semi-infinite homogeneous sections capable of
supporting a single propagating wavetype are connected through an intermediate
system, which may act at a point or be of finite extent in the x direction. The only
stipulations on this junction are that it be conservative and symmetric with respect
to the transformation x ——u.

For an incident wave from the left, reflection and transmission coefficients R and
T may be defined by assuming displacement fields as shown in figure 1. From the
assumption of symmetry, the same coefficients will govern reflection and trans-
mission of a wave incident from the right. Now consider symmetric excitation of the

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

/,//’ \\
'
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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system, with waves of equal amplitude and phase incident from both right and left.
After interaction with the junction structure, outgoing waves (R+7T)e 1@k wi]]
travel to the left (+ sign) and right (— sign). Evanescent waves will also be produced
near the junction, decaying away from it symmetrically on both sides. Internal
motions of the junction structure will be excited, but only those which are symmetric
under z->—ux.

Under this symmetric excitation, it is plain that there is no net energy flux passing
any point in the system. Considering the combined wavefield beyond the reach of the
evanescent fields, it follows that |[R+7] = 1. So let

R+T = o0, (3.1)

where 6, is a function of frequency, which is well-defined mod n and can be chosen
continuous. The displacements in the wavefield, on the left say, away from the
evanescent parts are then

e--i((ut~/€x) _!_e2iﬂ+ e*—i(wH-/Cﬁ:) —_ ze—i(wt—0+) Ccos (kx_ 0+) (32)

so that they are in phase everywhere.

Now choose a symmetric pair of points on the left and the right in the far
wavefield, at an antinodal point of this standing wave. Formally, we can join these
two points by imposing periodic boundary conditions, without in any way changing
the displacement fields. The result is a finite system that satisfies the condition of
phase closure at the artificially joined point. But this is one standard way of
determining normal mode frequencies of a finite system (see, for example, Cremer et
al. 1973 §11, 4). So we may deduce that all other generalized coordinates, including
those describing the evanescent fields and the internal degrees of freedom of the joint
structure, are also moving in the same phase. Thus we may regard ¢, as the phase
of a transfer function, taking the symmetric pair of incoming waves as input and the
response of one of the generalized coordinates describing the joint structure as
output. But the behaviour of the phase of forced response of a resonant structure is
very familiar: it increases by m for each mode which is excited. In this case, these are
the modes of the junction which are symmetric under x ——x. Of course, we ignore
any modes which are uncoupled to the wave motion. We also assume that the modes
are non-degenerate.

This argument may be repeated for the case of an antisymmetric pair of incoming
waves (equal amplitude but opposite phase in the far wavefield). Analogously to
(3.1), we find

R—T = ¥’ (3.3)

say, where 6_ changes by m each time the frequency passes through a mode of the
junction structure which involves motion which is antisymmetric under x——z.
Combining the two cases, we may deduce

R+T _ 2i(0,—0_)
o= e . (3.4)
from which it follows that
T/R =itan (6,—0_). (3.5)

This shows that the result displayed for the string with a point attachment in (2.3)
is quite general: the transmitted and reflected waves are in quadrature for any
system satisfying the symmetry conditions assumed here.

Phil. Trans. R. Soc. Lond. A (1994)
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It also follows immediately from (3.5) that whenever (0, —0_) =nn, T =0 and
there is perfect reflection of waves from the junction. Conversely, whenever
(0,—0_)=(n+3n, R =0 and there is perfect transmission through the junction.
Combining these results with the earlier remarks about the frequency dependence of
0. and 0_ yields a direct link between the resonances of the junction structure and
the number and distribution of frequencies of perfect reflection and perfect
transmission. Suppose first that the junction has only symmetric resonances, so that
0_ is constant. Then #, is monotonically increasing, through = for each resonance,
and there is a strict alternation of frequencies of perfect reflection and perfect
transmission. This is the case illustrated in §2, since a point attachment to a
stretched string could only exhibit symmetric modes of vibration (as a string cannot
support a point moment applied to it). Similar behaviour would occur in the converse
case, in which the junction structure allowed only antisymmetric modes.

The general case is rather more complicated. The behaviour depends on 6, —6_, so
that there is scope for the influences of symmetric and antisymmetric junction modes
to interact. If the modes are well separated (compared with the extent by which they
are broadened by radiation damping), there will be no significant interaction. The
phases 6, and 6_ each flip by n for each resonance, so that corresponding to each
resonance of the junction structure alone we may expect to find one frequency of
perfect transmission and one of perfect reflection. The precise frequencies at which
these occur depend on how the junction mode is influenced by coupling to the
evanescent and travelling waves of the wave-bearing systems. If the modes overlap,
things are less clear-cut. If there is a difference in modal densities between symmetric
and antisymmetric junction modes, then whatever happens there is an inexorable
trend in 6, —0_ based on the difference of the two, and that sets a minimum density
of frequencies of perfect reflection and perfect transmission. But they will in general
occur more frequently than this minimum, as will be illustrated by examples in the
next section.

4. Deterministic examples
(@) Point-constrained bending beam

The simplest system to exhibit the full range of behaviour revealed in the previous
section is a bending beam (with line density m and bending stiffness B) with a point
attachment that has resonances in both transverse and torsional motion (but no
coupling between the two, to satisfy the assumption of symmetry). So suppose that
at the point =0, a linear system is attached which presents a transverse
admittance Y (w) and a rotational admittance Y (w). For an incident wave from the
left, assume displacement fields

u(x, t) = e ~ivt [eilcx +Re—ilcx+]) ekx] (x < O),
u(w,t) = e W [Te* +Fe ™ ] (x=0), (4.1)

where k = [mw?/B]Ji. Imposing the four boundary conditions at « = 0 and solving the
resulting simultaneous equations, the solution for the reflection and transmission
coefficients may conveniently be written in the form

2(1—i)—h 21+i)+g
L A, —’,7=—-——— 4:2
AT =gi5vrn BT sy (42)
where g=—iw/Y,Bk, h=—iw/Y, Bk®. (4.3)
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In terms of the formalism of §3, this yields
0, = arctan (1—1h)—3in, O_ = —arctan (1+31g)—im. (4.4)

As expected, 0, depends only on the symmetric motion of the constraint, via the
function h involving the transverse response, while 6_ depends only on the
antisymmetric motion via the function ¢ involving rotational response. Solving for

the symmetric and antisymmetric combination of the evanescent fields yields

F+D=—2sin0,e%, F—D=2cosf_e"-. (4.5)
These have the appropriate phases 6, and 0_ respectively, as predicted by the general
argument in §3.

From (4.4) it is possible to deduce the behaviour of 6, and 6_ in various limiting
cases. If the symmetric constraint is weak, then A will be small at most frequencies.
For a strong constraint, on the other hand, 4 will generally be large. Similar remarks
apply to the function g in respect of the strength of antisymmetric constraint. The
symmetric and antisymmetric constraints do not necessarily have the same order of
magnitude of strength, as will be seen in §456. Now it is clear that when 2 =0, 0, = 0,
and when 4 oo, 0, = in. Similarly, when g = 0, §_ = In, and when g 0, _ = in.
(All these phases are given modn.) So for weak or strong constraints with the
respective symmetries, the corresponding phases can be expected to lie close to these
limiting values at most frequencies, flipping rapidly through m© when the pattern of
constraint resonances and antiresonances requires it. It follows that if both
constraints are weak, then |0_—0,| ~ in and |T| & 1 at most frequencies as one would
expect. Conversely if both constraints are strong, |6_—6,| = 0 so that |7] = 0 at most
frequencies. Finally, if one constraint is weak and the other strong (an extreme case
being a rigidly pinned point constraint), then |0_—0,| = in, and |T| & 1/4/2.

To see this behaviour in detail, it is convenient to work in terms of a specific
example. Let the attached system be a finite section of another bending beam lying
parallel to the infinite beam. This is assumed to be rigidly attached to the infinite
beam at its centre point, and to have both ends free so that it acts as a double
cantilever. The symmetric vibration modes of the finite beam will couple to the wave-
bearing beam via a transverse force, and will govern the behaviour of 6,. The
antisymmetric modes have a nodal point at the beam centre, but will couple via a
moment and will govern 6_. The two sets of modes alternate on the unconstrained
finite beam, of course. The system may be regarded as a multi-mode ‘tuned absorber’
attached to the infinite beam (although no damping is allowed in the system for the
present purpose).

By allowing the attached beam to have different properties to those of the infinite
beam, it is possible to investigate different régimes of strength of coupling. We will
suppose that the finite beam has bending stiffness AB and line density Am. Small
values of A will correspond to weak constraint (for both symmetric and antisymmetric
motion), while large values of A will correspond to strong constraint. The functions
0, and 6_ can be readily computed, using the fact that the two admittance functions
for this particular constraint system are

Y — iw [1+ cos kL cosh kL] (4.6)
Y7 2ABk? [cosh kL sin kL + cos kL sinh kL] :
i kL cosh kL
and Y, 1w [1+cos kL cos | (4.7)

~ 2Bl [cosh kL sin kL —sinh kL cos kL]’
where the attached beam is of length 2L.

Phil. Trans. R. Soc. Lond. A (1994)
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n
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Figure 2. Phase angles 6, and 6_ (left-hand column) and transmission coefficients (right-hand
column) plotted against frequency, for a symmetric free-free beam rigidly attached at its centre
to an infinite beam. The attached beam has bending stiffness and line density A times those of the
infinite beam, where A = 0.1 (top row), 1 (middle row) and 10 (bottom row).

Results are shown in figure 2a, ¢, e, for values A = 0.1, 1 and 10. These illustrate the
general characteristics expected from the preceding discussion. For A = 0.1, 6, has
plateaux around the value 0, while 6_ has them around }r. Conversely for A = 10, the
plateaux lie at in for both phase angles. For A = 1 intermediate behaviour is seen,
with less strongly marked plateaux. A similar sequence of behaviour would be
expected from any other attached constraint system, as the strength of coupling was
varied. The set of 6, curves all pass through the same values at the points where
0, =0 and in (modn). This is because at the frequencies at which 2 = 0 or oo, the
multiplying factor governing the constraint strength does not matter. Similarly, the
0_ curves all pass through the same values at the frequencies where 0_ = in and in,
corresponding to g = 0 and co.

The corresponding transmission coefficients are shown in figure 25, d, f. The
general discussion of §3 leaves some doubt as to exactly what will be seen in this case.
The symmetric and antisymmetric resonances have the same modal density, so it is
conceivable that the effects of 6, and 6_ would cancel, and that there would be no
frequencies of perfect transmission or perfect reflection. At the other extreme, when
the constraint resonances are well separated we might expect to find one perfect
reflection frequency and one perfect transmission frequency per mode. What is
revealed by the calculation is intermediate between these two. For all cases of
coupling strength it turns out that there is a perfect-transmission frequency for every
constraint mode, but that perfect reflection occurs only every two modes. It occurs
at the clamped-free half-beam frequencies, where Y, and Y, both vanish: these are

Phil. Trans. R. Soc. Lond. A (1994)
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frequencies of perfect reflection whatever the ratio of stiffness to density for the
attached beam. But the fact that the 6, and 6_ curves just touch at those frequencies
in figure 2 is specific to the case where the attached beam has the same ratio as the
infinite one: for differing ratios the curves will cross, producing two frequencies of
perfect reflection per pair of constraint modes.

(b) Cylindrical shell with a plane baffle

A more complicated example of the behaviour discussed in §3, and one of direct
engineering significance, is a thin, circular cylindrical shell with a thin panel bridging
the interior in a plane perpendicular to the cylinder generators. It is representative
of, for example, a tank with a baffle or an airframe structure with a bulkhead. At first
sight it might appear that the results of §3 do not apply to this system, because it
is not one dimensional. However, the cylindrical symmetry of both wave-bearing
system and constraint means that any possible motion of the system can be
decomposed into waveguide modes, in which radial shell motion may be assumed to
vary with azimuthal angle ¢ according to cosn¢ or sinng, where n =0,1,2,3, ...,
labels the successive waveguide modes. We refer to n as the ‘angular order’ of a given
waveguide mode.

For each angular order, considered separately, we have a one-dimensional problem
of the kind discussed in §3. The plane baffle obviously satisfies the symmetry
assumption. There are in general four wavetypes on a thin cylindrical shell, of which
up to three may be propagating. However, for an angular order of 2 or greater, the
two propagating wavetypes involving predominantly in-surface motion have cut-on
frequencies significantly higher than that of the predominantly flexural wavetype.
Thus for a range of low frequencies, the assumption of a single propagating wavetype
is satisfied. There are then three evanescent wavetypes.

This is a system for which the constraint strength for symmetric and antisymmetric
motion will be very different. Symmetric motion of the shell couples to the in-plane
motion of the circular plate, whereas antisymmetric motion of the shell couples to
flexural motion of the plate. When the plate is thin, one would anticipate that the
flexural motion will present a high admittance to the shell, compared with the in-
plane motion which will generally present a much lower admittance. Also, the modal
densities of the symmetric and antisymmetric resonances of the constraining system
will be quite different. The modal density of flexural modes in the plate will be much
higher than that for the in-plane modes, provided again that the plate is thin.

Applying the result of §3 now produces a surprising prediction. Since the modal
density of antisymmetric resonances is much greater than that of symmetric
resonances, 0, —6_ will have a systematic trend dominated by the behaviour of 6_,
and there will inevitably be a sequence of frequencies of perfect reflection and perfect
transmission. But these arise from the rather low-impedance flexural modes of the
baffle, and in spite of the fact that the in-plane motion imposes a strong constraint
on the cylinder at almost all frequencies. One might have expected some
enhancement of transmission around flexural resonances, but that the in-plane
constraint can be overcome entirely to produce perfect transmission is not perhaps
immediately intuitive.

Detailed computation confirms this prediction. For this purpose, the required
symmetric and antisymmetric impedances of the circular plate may be inferred from
the classic works of Love (1927, §314) and Rayleigh (1877, §218, et seq.), while the
modelling of the cylinder follows Arnold & Warburton (1949). As an example, we

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3. (@) Phase angles 6, (solid) and 6_ (dashed) and (b) transmission coefficient plotted against
frequency, for vibration with angular order » = 4 on an infinite thin circular cylinder with a thin,
plane circular baffle (as described in the text).

consider a steel cylinder of radius 1 m and thickness 5 mm, and a steel baffle of
thickness 5 mm. The ring frequency for this cylinder lies at 867 Hz. We show first
some results for a typical angular order, n = 8. The cut-on frequencies for the three
propagating wavetypes are 78 Hz (flexural waves), and 4133 Hz and 6990 Hz (in-
surface waves). There is indeed a wide range of frequencies for which only flexural
waves can propagate, within which the result of §3 may be applied.

The computed transmission coefficient T(w) is plotted in figure 3b6. Behaviour in
the expected pattern is immediately apparent, with frequencies of perfect
transmission and perfect reflection occurring approximately at the modal density of
flexural resonances in the baffle. The cut-on frequency for flexural waves is visible at
the left of figure 3b. The lower cut-on for in-surface motion makes itself apparent in
a more subtle way. For frequencies above this, while the transmission coefficient
continues to have peaks associated with flexural resonances of the baffle, those peaks
no longer reach a magnitude of unity. This is to be expected, since some of the
incident energy can now be scattered into the other propagating wavetype at the
baffle.

The functions 6, and 0_ are plotted in figure 3a. They present very different
appearances, as would be expected from the discussion above. The in-surface motion
has only a single resonance in the frequency range plotted, so that the 6, curve is
slowly varying. The hump at low frequencies arises from the dispersion characterlstlcs
of wave propagation on the cylinder for this angular order: on the low-frequency side
of the hump the cylinder is significantly stiffened by curvature effects (relative to a
flat plate of the same thickness and material) (Arnold & Warburton 1949). This effect
diminishes as the ring frequency is approached, and above that the behaviour is
much closer to that of a flat plate. This phenomenon also produces an effect on 6_.
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Figure 4. Transmission coefficient for the baffled cylinder problem of figure 3, plotted against
frequency and angular order.

At very low frequencies, corresponding to the rise of the hump in 6., the peaks of
perfect transmission are extremely narrow since the impedance mismatch between
baffle and cylinder is quite large. Once the ring frequency is approached, the
radiation damping of the baffle modes by the infinite cylinder increases and the peaks
become broader.

The computation may be repeated for the other angular orders. The resulting
transmission coefficients for n = 0, 1, ..., 33 are all plotted in figure 4, for frequencies
up to 1500 Hz. For each value of n, the result is represented by a vertical stripe whose
width is modulated in proportion to the transmission coefficient magnitude. The
stripes for n = 0 and 1 are truncated at low frequencies, when the associated cylinder
displacement becomes predominantly in-surface rather than radial. The frequencies
of perfect transmission appear as the wide spots on each stripe, and the systematic
variation of these frequencies with » is evident in the figure. The curves traced out
by these perfect transmission frequencies can be thought of as lines along which trace
wavenumber coincidence occurs between waves on the cylinder and in the baffle.

5. Implications for statistical energy analysis
(@) The effect on variance of sEA estimates

Once the transmission coefficient through a junction has been calculated, the
standard sEA procedure is to turn this into a coupling loss factor by various
averaging processes. These include some or all of: frequency averaging over a chosen
bandwidth ; ensemble averaging over systems whose properties and dimensions are
drawn from a statistical population representing manufacturing tolerances; and (if
the junction is extended in one or two dimensions) averaging over angles of incidence
of waves on the boundary, assuming a diffuse field within the source subsystem.
Frequency averaging and ensemble averaging may in fact be the same process, if an
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ergodic assumption is made about the effect of manufacturing differences on the
subsystem frequency response functions.

For a resonant coupling of the kind investigated here, the first issue to consider is
the bandwidth for frequency averaging, compared with the expected spacing of
frequencies of perfect transmission. The usual sea philosophy is to make sure that
the averaging bandwidth is wide enough to contain at least a few modes of each
subsystem, because the essence of sEaA is to lose the unwanted detail of individual
modal responses. One might therefore suppose that the same argument should be
applied to the ‘modes’, that is the frequencies of perfect transmission, of any
junctions in the system. Averaging over a very narrow band will give a coupling loss
factor which has significant frequency variation (Woodhouse 1981), although if an
ensemble average is also carried out this variation may be smoothed out.

But if the junction transmission coefficient is averaged over a sufficiently wide
band that a smoothly-varying answer is obtained, then a trap has been concealed
which may have a profound effect on the overall accuracy of the sea model. The
effect is most striking for a junction which behaves like figure 2f, with a transmission
coefficient which is generally low except for narrow peaks at which it reaches unity.
The calculated coupling loss factor will then be quite small, leading one to expect a
situation with ‘weak coupling’, for which sua is always said to work well (Lyon 1975;
Hodges & Woodhouse 1986). But the energy transmission by such a junction is very
selective: the source subsystem may have a uniform distribution of vibrational
energy in frequency, but the transmitted vibration will be strongly concentrated in
the narrow bands where the transmission is high.

If only these two subsystems are involved, this filtering may not matter very
much. A correct sEa model should predict the mean-square level in the second
subsystem accurately. The difficulty arises if this second subsystem is coupled to a
third by another junction with resonant properties. Then one of two things can
happen, and neither of them is handled very well by conventional ska. If the second
junction is the same as the first, the energy incident on it is ‘pre-filtered” to fit its
pattern of strong transmission. So one can expect a much higher proportion of the
energy to be transmitted across the second junction than across the first. This leads
to a phenomenon of ‘diminishing returns’ if the system geometry has a chain of
similar couplings. Explicit analysis of this phenomenon, based on two quite different
approaches, has been given by Heron (this Issue) and Langley & Bercin (this Issue).

If the second junction is different from the first, a different problem arises.
Typically, the very small number of perfect-transmission peaks within a given
frequency band will not line up in the two junctions, so that the field which has been
filtered by the first junction will transmit less well through the second than would
have been the case for a spectrally-white incident field. The normal, linearly-
averaged sEa coupling loss factor is not a very good measure of this energy
transmission. If the conventional coupling loss factors are used, this phenomenon
will produce an increase in the variance around the sEa mean prediction, when
different members of the statistical ensemble are tested. It is possible that this
variance could be reduced by a different choice of averaging procedure for the
coupling loss factors (Hodges & Woodhouse 1986).

Similar considerations apply to a junction which is extended in one or two
dimensions. For example, the data of figure 4 can be used to calculate a coupling loss
factor. As well as a frequency average, a suitable weighted sum of the results for
different angular orders must be taken, to represent a diffuse field incident on the
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junction (Lyon 1975 §3.3; Langley 1993). Perfect transmission occurs at different
frequencies for the different values of n, and one does not require such a broad
averaging bandwidth to achieve a smoothly varying random-incidence transmission
coefficient, from which a coupling loss factor may be obtained. Filtering effects are
produced by this junction too, not only filtering in frequency but also in
circumferential wavenumber. This can produce similar effects to those noted for the
beam example, for example diminishing returns from successive transmission
through identical junctions (Langley & Bercin, this Issue).

(b) When is a junction a subsystem ?

There is a second general issue raised by junctions with internal degrees of
freedom: under what circumstances does it become necessary to treat the coupling
as an energy-storing subsystem in its own right ? Of course, if one needs to allow for
damping in the junction structure, or excitation on it, then the sea formalism
requires that it appears as a subsystem. Problems associated with low modal density
may then arise, but those are familiar and are not the subject of this investigation.
We consider here the question of accuracy of modelling: the example from §4.a will be
analysed as a two-subsystem problem with complicated coupling and as a three-
subsystem problem with simpler coupling, and the results compared.

Consider first the general problem of two joined systems, with energies £, and £,
and modal densities n, and n,, having a third system attached symmetrically at the
junction point. This third system is assumed to have no damping or external drive,
and to have energy £, and modal density n,. Suppose that the subsystems 1 and 2
are locally physically similar (for example, two sections of beam with the same cross-
section but perhaps different lengths). Using the normal sea formalism (Lyon 1975
§3.2), a requirement of power balance on the third subsystem gives

By/ng =3B /n,+ Ey/n,] (5.1)

(where advantage has been taken of the symmetry of coupling 13 and 2 3). In
terms of the thermal analogy of sEa, the attached system adjusts to the mean
‘temperature’ of the other two subsystems. This equation may be used to eliminate
E, and n, from the other two power-balance equations, and the result is an
‘equivalent two-subsystem model’ derived from the three-subsystem model. If the
coupling factors (i.e. the products of coupling loss factor and modal density which
satisfy reciprocity) in the three-subsystem model are ¢, (between systems 1 and 2)
and €, (between systems 1 or 2 and system 3), then the equivalent coupling factor
between systems 1 and 2 in the two-subsystem model turns out to be (¢,+3¢,).

To apply this to the example of §4a, we first calculate the transmission coefficients
for the problem in which the two halves of the attached cantilever beam are regarded
as semi-infinite. These can be used to calculate the coupling factors ¢, and ¢; by the
usual sEA wave-method approach. But for the present purpose it is easier to work in
reverse and deduce an equivalent transmission coefficient from the argument given
above, which can be compared directly with a suitably averaged value of the
transmission coefficients plotted in figure 2.

The calculation of the transmission coefficients at a junction of four semi-infinite
beams is quite straightforward. The general expressions for the answers are quite
lengthy, but when the assumption is made, as before, that the ‘attached’ beams have
bending stiffness AB and line density Am (compared to the corresponding properties B
and m of the original semi-infinite beams) they reduce to very simple expressions.
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The (energy) transmission coefficient between the two sections of original beam is
7, = 1/(1+2)%, and that from a section of original beam to a section of ‘attached’
beam is 7, = A/(1+A)%. Noting that the attached subsystem is composed of both
(identical) sections of attached beam, the required equivalent transmission
coefficient, based on (¢, +3¢,) from above, is then

Ti+Ty=1/(1+A). (5.2)

So for the case of figure 2f with A = 10, the equivalent transmission coefficient is
1/11, —10.41 dB.

When a frequency average is performed on the results plotted in figure 2 f, choosing
one ‘cycle’ of the obvious pattern as the bandwidth, the result rapidly converges to
0.9836, —10.07 dB. (At very low frequencies it is slightly different, largely because
of the influence of the evanescent fields.) So for this example, the two methods agree
with some accuracy. Numerical experiments reveal that this agreement persists
over a very wide range of assumed properties of the attached beam. So at least for
this idealized problem, it seems that one can treat the attached beam as a
complicated coupling or as a third subsystem, and obtain essentially the same sEa
model by either route. It would be interesting to test this conclusion on other
combinations of wavebearing system and junction structure.

6. Conclusions

Resonant couplings of the kind examined here produce strong frequency
dependence of the transmission coefficient, and this can have significant implications
for the result and interpretation of vibration analysis, whether deterministic or
statistical, of a system which includes the junction. Frequencies of perfect
transmission and of perfect reflection are likely to occur, and these are a universal
feature of junctions of the kind considered here. Modifications to the detailed design
may move them around, but will not eliminate them unless they break the assumed
symmetry. (An example of the possible usefulness of broken symmetry is the
improved transmission loss when two panes of glass of different thickness are used in
double glazing, compared with two identical panes.) Insight can be gained by
considering the physical nature of the vibration modes of the junction. Symmetric
and antisymmetric modes should be considered separately, and their modal densities
and strength of coupling to the rest of the system examined.
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